Sodium ion channel alkaloid resistance does not vary with toxicity in aposematic Dendrobates poison frogs: An examination of correlated trait evolution
نویسندگان
چکیده
Spatial heterogeneity in the strength or agents of selection can lead to geographic variation in ecologically important phenotypes. Many dendrobatid frogs sequester alkaloid toxins from their diets and often exhibit fixed mutations at NaV1.4, a voltage-gated sodium ion channel associated with alkaloid toxin resistance. Yet previous studies have noted an absence of resistance mutations in individuals from several species known to sequester alkaloid toxins, suggesting possible intraspecific variation for alkaloid resistance in these species. Toxicity and alkaloid profiles vary substantially between populations in several poison frog species (genus Dendrobates) and are correlated with variation in a suite of related traits such as aposematic coloration. If resistance mutations are costly, due to alterations of channel gating properties, we expect that low toxicity populations will have reduced frequencies and potentially even the loss of resistance alleles. Here, we examine whether intraspecific variation in toxicity in three dendrobatid frogs is associated with intraspecific variation in alleles conferring toxin resistance. Specifically, we examine two species that display marked variation in toxicity throughout their native ranges (Dendrobates pumilio and D. granuliferus) and one species with reduced toxicity in its introduced range (D. auratus). However, we find no evidence for population-level variation in alkaloid resistance at NaV1.4. In fact, contrary to previous studies, we found that alkaloid resistance alleles were not absent in any populations of these species. All three species exhibit fixed alkaloid resistance mutations throughout their ranges, suggesting that these mutations are maintained even when alkaloid sequestration is substantially reduced.
منابع مشابه
Convergent Substitutions in a Sodium Channel Suggest Multiple Origins of Toxin Resistance in Poison Frogs.
Complex phenotypes typically have a correspondingly multifaceted genetic component. However, the genotype-phenotype association between chemical defense and resistance is often simple: genetic changes in the binding site of a toxin alter how it affects its target. Some toxic organisms, such as poison frogs (Anura: Dendrobatidae), have defensive alkaloids that disrupt the function of ion channel...
متن کاملThe role of predator selection on polymorphic aposematic poison frogs.
Demonstrations of interactions between diverse selective forces on bright coloration in defended species are rare. Recent work has suggested that not only do the bright colours of Neotropical poison frogs serve to deter predators, but they also play a role in sexual selection, with females preferring males similar to themselves. These studies report an interaction between the selective forces o...
متن کاملAn Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species
Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio) sh...
متن کاملAposematic signal variation predicts male-male interactions in a polymorphic poison frog.
Many species use conspicuous "aposematic" signals to communicate unpalatability/unprofitability to potential predators. Although aposematic traits are generally considered to be classic examples of evolution by natural selection, they can also function in the context of sexual selection, and therefore comprise exceptional systems for understanding how conspicuous signals evolve under multifario...
متن کاملExperimental Evidence for Aposematism in the Dendrobatid Poison Frog Oophaga pumilio
Brightly colored poison frogs of the family Dendrobatidae contain an alkaloid-based chemical defense against predation. The bright coloration of these frogs is generally considered an aposematic signal to potential predators; however, relatively few studies have specifically tested this hypothesis. Herein we report the results of a field-based experiment designed to test the hypothesis of apose...
متن کامل